Optimal input design for nonlinear dynamical
systems: a graph-theory approach

Patricio E. Valenzuela

RovAL INSTITUTE Department of Automatic Control and ACCESS Linnaeus Centre
KTH Royal Institute of Technology, Stockholm, Sweden

Seminar Uppsala university
January 16, 2015

System identification

Ut

m
\L Ut
—_— =

ut% System =

@ System identification: Modeling based on input-output data.

@ Basic entities: data set, model structure, identification method.

System identification

The maximum likelihood method:

A

anseq = arg Iarlea@){ le (yl:nseq)

where
lg(Y1:n4eq) = 108 PO(Y1:necq)
As ngeq — 00, we have:
° énseq — b

9 |\ /Mseq (&nseq — 90> — Normal with zero mean and
covariance {Z§}~!

System identification

9 |\ Mgeq (Hnseq — 90) — Normal with zero mean and

covariance {Z§}~!
ul:nseq}

Covariance matrix of | /Mgeq (énseq — 00> affected by u1.p,,!

where

0
I = ES —lp(Y1:n, —lo(Y1:n,
F { 69 G(yl beq) 9:90 aHT 0(y1 aeq)

6=06q

Different UlingeqS = different Z%s.

Input design for dynamic systems

@ Input design: Maximize information from an experiment.

@ Existing methods: focused on linear systems.

@ Recent developments for nonlinear systems (Hjalmarsson 2007,
Larsson 2010, Gopaluni 2011, De Cock-Gevers-Schoukens 2013,
Forgione-Bombois-Van den Hof-Hjalmarsson 2014).

Input design for dynamic systems

Challenges for nonlinear systems:
@ Problem complexity (usually non-convex).
@ Model restrictions.

@ Input restrictions.

How could we overcome these limitations?

Summary

1. We present a method for input design for dynamic systems.

2. The method is also suitable for nonlinear systems.

Outline

Problem formulation for output-error models
Input design based on graph theory
Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work

ROVAL INSTITUTE
OF TECHNOLOGY

Problem formulation for output-error models

Problem formulation for output-error models

Gy is a system, where:

-e;: white noise (variance \.)
-ug: input
-y system output

€t
Yt
1\
Goal: Design
Ulingeq i= (UL, -y Ungey)

as a realization of a stationary
process maximizing L.

10

Here,

Nseq
= —E{Z¢ up) (

-5/ Gt

P (ug) = Vit (ut)lg—g,
Ge(u) = G(ug; 0)

Design u1:n,., € R™ < Design P(u1:n,.,) € P.

Problem formulation for output-error models

)

) dP('LLl nseq)

11

Problem formulation for output-error models

Here,
Nseq
= _E {Z 1/1 (ut T/Jt ut) }
= 5. [X vt)T aP i)
Assumption
up € C (C finite set)
1 Nseq
IF -)_ Z Z 'l)b Ut wt) (ulznseq)
€ Ulingeq EC504 t=1

12

Problem formulation for output-error models

Characterizing p(u1:n,,) € Pe:

9@ p nonnegative,

° X p(x) =1,

@ p is shift invariant.

13

ao,
=31 Problem formulation for output-error models

Problem

opt

Design uy,, . € C"*4 as a realization from PP (U1:ny.,), Where

PP (Ulingey) i= BTG max MZr(p))

where h : R">*™ — R is a matrix concave function, and

Nse
1 @l

Ir(p) =+ 2 > U)b (w)T plurn,)

€ Ul:ngeq €Cmsed t=1

14

ROVAL INSTITUTE
OF TECHNOLOGY

Input design based on graph theory

Input design problem

Problem

pt

Design uih, € C"™ as a realization from p°P*(u1.,.,), where

popt(urns@q)- arg]gé%}cch(l'p(D))

where h : R">*™ — R is a matrix concave function, and

Nse
1 @l

Ir(p) = . Z Z ¢ (ut th) P(Uiingeq)

¢ ul:nseq €CMseq t=1

Issues:

1. Zp(p) requires a sum of ngq-dimensional terms (ngq large).

2. How could we represent an element in P¢?

16

Input design problem

Solving the issues:

1. Zr(p) requires a sum of ngq-dimensional terms (ng.q large).

Assumption

Ulingeq 1S @ realization of a stationary process with memory 1.,
(e

= T (p) requires a sum of n,,-dimensional terms.

Minimum n,,: related with the memory of the system.

17

Input design problem

Solving the issues:
2. How could we represent an element in P¢?

‘Pc is a polyhedron.
Vp.: Set of extreme points of P¢.
= Pc can be described as a convex combination of Vp,.

The elements in Vp, can be found by using Graph theory!
18

Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

Elements in Vp. < Prime cycles in Genm
Prime cycles in Genm < Elementary cycles in Gon,,—1)

19

Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

Elements in Vp. < Prime cycles in Genm
Prime cycles in Genm < Elementary cycles in Gon,,—1)

20

Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

Elements in Vp. < Prime cycles in Genm

Prime cycles in Genm < Elementary cycles in Gon,,—1)
21

Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

4

Elements in Vp. < Prime cycles in Genm

Prime cycles in Genm < Elementary cycles in Gon,,—1)
22

Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

4

Elements in Vp. < Prime cycles in Genm
Prime cycles in Genm < Elementary cycles in Gon,,—1)
23

Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

There are algorithms to find elementary cycles (Johnson 1975,

Tarjan 1972).
24

Graph theory in input design

Once v; € Vp, is known

= The distribution for each v; is known.

= An input signal {u{}!=}" can be drawn from v;.

Therefore,

Il(ﬁ') =)\i Z 21/1 (u T/Jt) vi(U1:n,,)

euln eCnm t=1

0o ut)T

Ae N =

for all v; € Vp,.
25

Graph theory in input design

Therefore,

= X S 080 (o

euln eCnrm t=1

0o ut)T

Ae N =

for all v; € Vp,.

The sum is approximated by Monte-Carlo!

) V3 (ulznm)

26

Input design based on graph theory

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .
2. Generate the input signals {u{}!=}" from the prime cycles of

Genm, for each i € {1, ..., ny}.
3. For each i € {1, ..., ny}, approximate Ig) by using
N
I(Z Ut wt)

27

Input design based on graph theory

To design an experiment in C™™:

4. Define v :={ay,..., an,} € R™.
Solve

opt .__ T2PP
A e g e L)

where

ny)
() =) oIy
=1

ny
Zai =1
i=1
a; >0, forallie{l,..., ny}

28

Input design based on graph theory

To design an experiment in C™™:

5. The optimal pmf p°P! is given by
ny
popt — Z a(_)pt vi
(2
=1
6. Sample uy.,,. from p°P' using Markov chains.
P seq

TP () linear in the decision variables = The problem is convex!

29

Example |

€t
Ut GO O Yt
1 +
x = U
t+1 91 T :L'tZ t

Glus;6) = Yy = O 7 + e

xle

T T
with 6 = [91 02} — 0 = [0.8 2} .
e;: white noise, Gaussian, zero mean, variance A\, = 1.

30

Example |

€t
Ut GO O Ui
1 +
X = —F u
t+1 91 T :L't2 t

G(ut; 0) = Yp = 92 x% + ey

xle

T T
with 0 = |01 62| =0 =08 2] .
We consider h(-) = logdet(-), and ngeq = 10%.

31

Example |

Ti4l = 73— T Ut
* 91+x§

G (us; 0) = yr = O a7 + e

xr1 = 0
Results:

h(Zr) ‘Casel Case 2 Case 3 Binary
log{det(Zp)} | 382 450 448 347

Case 1: n,, =2,C={-1,0, 1}
Case 22 n,, = 1,C={-1, -1/3,1/3, 1}
Case 3: n,, = 1,C ={-1, —0.5, 0, 0.5, 1}

32

Example |

ROVAL INSTITUTE
OF TECHNOLOGY

Results (95 % confidence ellipsoids):

2.02F

2.015¢

2.01r

2.005¢

0
N

1.995¢

1.99r

1.985r

1.98¢

0.79 0.8 0.81

Red: Case 2; Blue: Binary input.

33

ROVAL INSTITUTE
OF TECHNOLOGY

Extension to nonlinear SSM

34

Extension to nonlinear SSM

Nonlinear state space model:

zo ~ (o)
x|zi—1 ~ folwe|ri—1,u—1)

yelze ~ go(ye|we, ut)

where 0 € ©.
Goal: Design
_fel 9o, K- pdfs
-2y states Ulingeq *— (ug, ..., Unseq)
-ug: input

-y¢: system output as a realization of a stationary

process maximizing L.

35

Extension to nonlinear SSM

Here,

Tr = E{S(00)ST (60)}
5(90) = Vy]'nge(yllnseq|u1:nseq)|€:€O

Design u1:n,., € R™ < Design P(uq.n,.,) € P.

36

Extension to nonlinear SSM

Fisher's identity:

Vg log po(y1.rlur.r) = E {Vglog po(x1.1, yr.rlurr)|yrr, vir}

T

Vo log py(y1.7|urr) = Z/X? §o(ze—1:4, ut)po(Ti—1:¢y1.7)dT—124
=1

with

fe(xt—lm Ut) = Vy [log f0($t|xt—1aut—1) + logge(yt|xt,’ut)}

Assumption
up € C (C finite set)

37

Extension to nonlinear SSM

Recall Pe:

@ p nonnegative,

° Yp(x)=1,

@ p is shift invariant.

38

Extension to nonlinear SSM

Problem

opt
1:ng

Design uy}, . € C™< as a realization from PP (u1:p,.,), Where
PP (Uiingq) += arg max h(Zr(p))
PEPc
where h : R™*" — R is a matrix concave function, and

Zr(p) = E {S(60)S" (60) }

39

Input design problem for nonlinear SSM

Problem

pt

q o
Design wy.y, .

€ C"a as a realization from p°P*(uy.y,,,), where

P (g, = h(Z
PP (Ulimgeq) 201 s (Zr(p))

where h : R">*™ — R is a matrix concave function, and
Ir(p) = E{S(00)S" (8)}

Issues:

1. How could we represent an element in Pc? = Use the
graph theory approach!

2. How could we compute Zp(p)?

40

Input design based on graph theory (revisited)

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .

2. Generate the input signals {ui}/=¥ from the prime cycles of
Genm, for each i € {1, ..., ny}.

i)

3. Foreach i € {1, ..., ny}, approximate II(J by using

73 = By ur) {S00)ST (80) }

~ (new expression required!)

41

Estimating Zr

Approximate Zr as

1 M
7 2 Sm(%) S (60)
m:l

o Difficulty: S,,(6p) is not available.

@ Solution: Estimate S,,(6p) using particle methods!

42

Particle methods to estimate S,,(6))

@ Goal: Approximate {pg(w1.t|y1:t) }t>1-
o (20 WY .

14 Wi }izq: Particle system.

@ Approach: Auxiliary particle filter 4+ Fixed-lag smoother.

43

Particle methods to estimate S,,(6))

Estimate S,,(0y) as

T N i) o
— -1 Kt
—ZZw €oo (J’7t § ™ w)

t=11i=1

where

Eo(@i—1:4, ut) = Vg [1055 fo(xe|lwi—1,ue—1) + logge(ytm,ut)}

44

Input design based on graph theory (revisited)

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .
2. Generate the input signals {ui}/= from the prime cycles of
Genm, for each i € {1, ..., ny}.

) by using

3. Foreach i € {1, ..., ny}, approximate Il(f
I == By urn,,) {S(00)ST (60) }

L I -
~— > 85n(00)S,,(00)
M m=1 "

45

Input design based on graph theory (revisited)
To design an experiment in C™™:

4. Define v :={ay,..., an,} € R™.
For k€ {1, ..., K}, solve

opt,k . _ h 72PP:k
gl arg max h{Zp " (7))

where

Iapp7k S - I(Z)ﬂk
F (k) -—E kL
i=1

ny
> g =1
1=1
a; >0, forallie{1,..., ny}

Compute 7 as the sample mean of {y°PtF}E

46

Input design based on graph theory (revisited)

To design an experiment in C™™:

5. The optimal pmf p°P! is given by

_opt
Z v

6. Sample uj.p,,, from p°Pt using Markov chains.

TP () linear in the decision variables = The problem is convex!

47

Example Il

Nonlinear state space model:

x
Tep1 = bhay + 7232 + ug + vy, vy ~ N(0,0.1%)
t

02 +
Y= 5 + D + ey, er ~ N(0,0.1%)

where 6 = [0 92}T, o = 0.7 O.G}T.

Input design: ngeq = 5 - 10%, n, = 2, C = {-1,0,1}, and
h(-) = log det(-).

48

Example Il

Input sequence:

1.5
1
0.5

3 0
-0.5r
s

—1.50

20

40

60

80

100

49

Example Il

Results:

Input / h(Zr) | logdet(Zr)

Optimal 25.34
Binary 24.75
Uniform 24.38

50

ROVAL INSTITUTE
OF TECHNOLOGY

Closed-loop application oriented input design

51

Closed-loop application oriented input design

(ext. excitation) ry U | System

Kyi(-) — y¢ (setpoint)

System (6p € ©):
Ti41 = Agoxt + B(;Out
yr = Coort + 11y
ve = H(q; 6o)ey

{e:}: white noise, known distribution.
Feedback: w; =1 + Ky (yr — y?)

52

Closed-loop application oriented input design

Model:
Ti41 = A(H)xt + B(Q)ut
Yy = C’(G)xt +
ve = H(g; 0)e
0 e 0.

Goal: Perform an experiment to obtain 0
= design 1., !

MNseq "

Requirements:
1. y¢, uy should not be perturbed excessively.

2. énseq must satisfy quality constraints.

53

Closed-loop application oriented input design

Minimize control objective:

Nseq
J=FE {Z yo— o+ e - ut_lnz}

Requirements:
1. y¢, uy should not be perturbed excessively.
Probabilistic bounds:

P{|yt - yd‘ < ymax} >1-— €y
P{|ut| < umax} >1—¢6

fort =1,..., Ngeq

54

Closed-loop application oriented input design

Requirements:
2. On,., must satisfy quality constraints.

Maximum likelihood: As ngeq — 00, we have:
Vseq (B — 00) € AN (0, {Z5:})
= ldentification set:

Osi(a) = {02 (0~ 00) " T (0 — 00) < X% (o) }

55

Closed-loop application oriented input design

Oapp(V)

Requirements:
2. On,., must satisfy quality constraints.

Quality constraint: Application set
1
01) = {0: Varn(6) < - |
Relaxation: Application ellipsoid

Oun(1) = {850~ 00) V3Varp(6)],_, (0~ 0) <

0=09

=2 |

56

Closed-loop application oriented input design

Oupp(7)

Requirements:

2. énseq must satisfy quality constraints.

Quality constraint:
Osi(a) C Oapp(7)
achieved by

= 7€
B = 3 V),

57

Closed-loop application oriented input design

Optimization problem:

Nseq
min J=E {Z lly: — yd\lé + ||Aut||?%}
t=1

{re}, 20
s.t. System constraints
P{|yt - yd| < ymax} >1-— €y
P{|Ut‘ < umax} >1—¢€

2
a(n
Ip - WT(Q)VZVWP(@)
o Difficulty: P (and Z§%) hard to optimize.

@ Solution: Use the graph-theory approach!

58

Closed-loop application oriented input design

Graph theory approach:
T1:neeq realization from p(r1.,,,) with alphabet C.

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .

2. Generate the signals {r{}:=}" from the prime cycles of Genm,
foreachi € {1, ..., np}.

59

Closed-loop application oriented input design

Graph theory approach:
T1:neeq realization from p(r1.,,,) with alphabet C.

()

Given €1:Ny,» 711N, @PProximate

snnt 1

Petmgj){|u£])| < Umax } & Monte Carlo

Pet,rgj)ﬂyt(” - yd‘ < ymax} ~ Monte Carlo

I(J) computed as in previous parts.

> [ol =+ o~

60

Closed-loop application oriented input design

Optimization problem (graph-theory):

5" 500

{Blw ’an] 1
s.t. System constraints
Constraints on {f3;}7*,

N)
Zﬁij@{lu,ﬁ”I < Umax} >1—¢€
Jj=1

Ny .
Zﬁijgﬁ{lyt@) — Y < Ymax} > 1 — ¢y

Z 8,79 » vxa()Vevapp(e)

seq

61

Closed-loop application oriented input design

Optimal pmf:

Ny
t . t
p0p = § :ﬂ;?P pj
Jj=1

62

Example 11l

Consider the open-loop, SISO state space system
_ 0
Ti41 = 92 T+ Ut
yr =00z + e

69 egf: 0.6 0.9}T.

Input:
Ug =Tt — k?y Yt
ky = 0.5 known.

T
Goal: Estimate {91 02} using indirect identification.

63

Example 11l

Design {r:}2%9, n,, =2, r, € C = {-0.5, —0.25, 0, 0.25, 0.5}.
Performance degradation:

1 500)
Vaon(6) = 255 > l(6o) — e®)]3
t=1

o yl=0
@ ¢, =¢, =0.07

® Ymax = 2, Umax = 1

64

Example Il

Reference:
0.5F ‘ ‘]
O e x m—
_0.5— 4
0 20 40 60 80 100
0.5F ! ! ! ! 1
I
-0.5¢ . f
0 20 40 60 80 100
0.5] ‘ ~m Hmﬁ M
_OI5< — J : L .
0 20 40 60 80 100

65

pva
Typewritten Text
Opt. 1:

pva
Typewritten Text
Opt. 2:

pva
Typewritten Text
Binary:

Example Il

Input:
Opt. 1:93.8% = |l syl L iy
0 iO 4‘0 Gb 8b 100
Opt. 2: 86.6% imfmehMLﬂfulﬂfkﬂMMﬂﬂmw
0 2‘0 4‘0 éO 8b 100

Binary: 90.8% = [yl LAy

0 20 40 60 80 100

pva
Typewritten Text
Opt. 2: 86.6%

pva
Typewritten Text
Opt. 1: 93.8%

pva
Typewritten Text
Binary: 90.8%

Example Il

Output:

27 ~ 4
Opt1:96% = Yl P
_27 4

20 40 60 80 100

2r]
Opt. 2: 93.4% = OWUHJJLJWUWWHMW
_2, i 4

0

20 40 60 80 100

2r 1
Binary: 79.6% = OWMNWWW
_27 . |

20 40 . 60 80 100

67

pva
Typewritten Text
Opt. 1: 96%

pva
Typewritten Text
Opt. 2: 93.4%

pva
Typewritten Text
Binary: 79.6%

Example 11l

Application and identification ellipsoids: (98% confidence level)

L) Oapp(7)
Al ./“““ /@bmary (@)
<£0.9 £
0.8
0.7 ~ 0% (a)

68

ROVAL INSTITUTE
OF TECHNOLOGY

Conclusions and future work

69

Conclusions

@ A new method for input design was introduced.
@ The method can be used for nonlinear systems.

@ Convex problem even for nonlinear systems.

70

Future work

@ Reducible Markov chains.

@ Computational complexity.

@ Robust input design.

@ Application oriented input design for MPC.

71

Thanks for your attention.

72

Optimal input design for nonlinear dynamical
systems: a graph-theory approach

Patricio E. Valenzuela

RovAL INSTITUTE Department of Automatic Control and ACCESS Linnaeus Centre
KTH Royal Institute of Technology, Stockholm, Sweden

Seminar Uppsala university
January 16, 2015

Outline

Problem formulation for output-error models
Input design based on graph theory
Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work

74

Appendix |: Graph theory in input design

Example: Elementary cycles for a de Bruijn graph, C := {0, 1},
Ny = 1.

One elementary cycle: z = (0, 1, 0).

= Prime cycles for a de Bruijn Graph, C := {0, 1}, n,, := 2:
v1 = ((0, 1), (1, 0), (0, 1)).

75

Appendix Il: Graph theory in input design

Example: Generation of input signal from a prime cycle.

Consider a de Bruijn graph, C := {0, 1}, n,, := 2.
QU1 = ((07 1)7 (17 0)7 (07 1))

o {u}}=lV: Take last element of each node.

Finally,

{Ui}izév = {17 0,L0,..., ((_1)N + 1)/2}

76

Appendix III: Building A

@ For ¢ € C™m, define
Ai={jecC™: (5,i) € E}.

(the set of ancestors of 7).

@ For each 7 € C™m, let

. U if
) jeA;and > P{k}#0
P{k}
) KA
Agj = 2, if j € A; and P{k} =0
#A kEAi { }
0, otherwise.

7

Apendix IV: Example nonlinear case

Ut GO Yt

C

Go(ut) = Gi1(q,0) ur + Ga(q,0) uj

where

Gi(q,0) =01+ 02q7"
Gg(q,ﬁ) = 93 + 04 q_l

e¢: Gaussian white noise, zero mean, variance A\, = 1.
78

Apendix IV: Example nonlinear case

Ut GO Yt

C

Go(ut) = G1(q,0) ur + Ga(q,0) ui
where

Gl(q,e) =01 + 05 q_l
Ga(q,0) =03+ 04q7"

We consider h(-) = det(:), cseq = 3, nm, = 2, C := {—1, 0, 1},

and N =5-103.
79

@b,
241 Apendix |V: Example nonlinear case
P P

Stationary probabilities:

M X X |
-1 0 1

Ut

[

t—
o

o det(Z7P) = 0.1796.
@ Results consistent with previous contributions (Larsson et al.
2010).

80

Auxiliary particle filter:

f: w” (i)
Po(T1:4|yr:e) == ———=0(r1 — 331Z:t)
i=1 Zévzl wEk)

{xgzl’ wgi)}f\ilz Particle system.

Two step procedure to compute {335235, wt(i) fvzlz

1. Sampling/propagation.

2. Weighting.

Appendix V: Particle methods to estimate S,,,(60y)

81

Appendix V: Particle methods to estimate S,,,(60y)

Two step procedure to compute {azgz)t, wt(i)}f\;lz
1. Sampling/propagation:

wit
=l Ro (|2 us—1)

N (k)

k=1Wi_1

{al, &V} ~

82

Appendix V: Particle methods to estimate S,,,(60y)

Two step procedure to compute {xﬁ, wt(i)}f\;lz
2. Weighting:

w(i) L ge(yt‘l'gi)aut)f9($t|$l(gi_)1aut—1)
t i
R&,t(xt‘xg_)put—l)

83

Appendix V: Particle methods to estimate S,,,(60y)

@ Difficulty: Auxiliary particle filter suffers particle degeneracy.

@ Solution: Use fixed-lag smoother.

Main idea FL-smoother:

pG(xt‘y1:T7 ul:T) ~ pG(xt‘ylsnty ul:nt)

for ky = min(t + A, T), for some fixed-lag A > 0.

84

Apendix VI: Equivalence time and frequency domain

Frequency Time
Design variable D, (w) P(ULin,,)
o d,(w) >0 p=0
Restrictions QL T By(w)dw < 1 Zul:;nlsii?;:;; =1
Information matrix Ir(®y) Ir(p)

85

