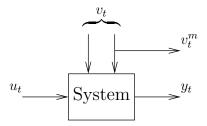
Optimal input design for nonlinear dynamical systems: a graph-theory approach

Patricio E. Valenzuela

Department of Automatic Control and ACCESS Linnaeus Centre KTH Royal Institute of Technology, Stockholm, Sweden

Seminar Uppsala university January 16, 2015

System identification



• System identification: Modeling based on input-output data.

• Basic entities: data set, model structure, identification method.

System identification

The maximum likelihood method:

$$\hat{\theta}_{n_{\text{seq}}} = \arg\max_{\theta \in \Theta} l_{\theta}(y_{1:n_{\text{seq}}})$$

where

$$l_{\theta}(y_{1:n_{\text{seq}}}) := \log p_{\theta}(y_{1:n_{\text{seq}}})$$

As $n_{\text{seq}} \to \infty$, we have:

- $\hat{\theta}_{n_{\text{seq}}} \to \theta_0$
- $\sqrt{n_{
 m seq}}\left(\hat{\theta}_{n_{
 m seq}}-\theta_0
 ight) o$ Normal with zero mean and covariance $\{\mathcal{I}_F^e\}^{-1}$

System identification

• $\sqrt{n_{
m seq}}\left(\hat{ heta}_{n_{
m seq}}- heta_0
ight) o$ Normal with zero mean and covariance $\{\mathcal{I}_F^e\}^{-1}$

where

$$\mathcal{I}_F^e := \mathbf{E} \left\{ \left. \frac{\partial}{\partial \theta} l_{\theta}(y_{1:n_{\text{seq}}}) \right|_{\theta = \theta_0} \left. \frac{\partial}{\partial \theta^{\top}} l_{\theta}(y_{1:n_{\text{seq}}}) \right|_{\theta = \theta_0} \left| u_{1:n_{\text{seq}}} \right. \right\}$$

Different $u_{1:n_{\text{seq}}} s \Rightarrow \text{different } \mathcal{I}_F^e s.$

Covariance matrix of $\sqrt{n_{\rm seq}} \left(\hat{\theta}_{n_{\rm seq}} - \theta_0 \right)$ affected by $u_{1:n_{\rm seq}}$!

Input design for dynamic systems

• Input design: Maximize information from an experiment.

Existing methods: focused on linear systems.

 Recent developments for nonlinear systems (Hjalmarsson 2007, Larsson 2010, Gopaluni 2011, De Cock-Gevers-Schoukens 2013, Forgione-Bombois-Van den Hof-Hjalmarsson 2014).

Input design for dynamic systems

Challenges for nonlinear systems:

- Problem complexity (usually non-convex).
- Model restrictions.
- Input restrictions.

How could we overcome these limitations?

 $1. \ \mbox{We present a method for input design for dynamic systems.}$

2. The method is also suitable for nonlinear systems.

Outline

Problem formulation for output-error models

Input design based on graph theory

Extension to nonlinear SSM

Closed-loop application oriented input design

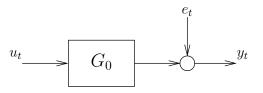
Conclusions and future work

Input design based on graph theory

Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work



 G_0 is a system, where:

- e_t : white noise (variance λ_e)

 $-u_t$: input

 $-y_t$: system output

Goal: Design

$$u_{1:n_{\text{seq}}} := (u_1, \ldots, u_{n_{\text{seq}}})$$

as a realization of a stationary process $maximizing \mathcal{I}_F$.

Here,

$$\mathcal{I}_F := \frac{1}{\lambda_e} \mathbf{E} \left\{ \sum_{t=1}^{n_{\text{seq}}} \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top \right\}$$

$$= \frac{1}{\lambda_e} \int \sum_{t=1}^{n_{\text{seq}}} \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top dP(u_{1:n_{\text{seq}}})$$

$$\psi_t^{\theta_0}(u_t) := \nabla_{\theta} \hat{y}_t(u_t)|_{\theta = \theta_0}$$

$$\hat{y}_t(u_t) := G(u_t; \theta)$$

Design $u_{1:n_{\text{seq}}} \in \mathbb{R}^{n_{\text{seq}}} \Leftrightarrow \text{Design } P(u_{1:n_{\text{seq}}}) \in \mathcal{P}.$

Here,

$$\mathcal{I}_F := \frac{1}{\lambda_e} \mathbf{E} \left\{ \sum_{t=1}^{n_{\text{seq}}} \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top \right\}$$
$$= \frac{1}{\lambda_e} \int \sum_{t=1}^{n_{\text{seq}}} \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top dP(u_{1:n_{\text{seq}}})$$

Assumption

$$u_t \in \mathcal{C}$$
 (\mathcal{C} finite set)

$$\mathcal{I}_F = \frac{1}{\lambda_e} \sum_{u_t} \sum_{t=1}^{n_{\text{seq}}} \sum_{t=1}^{n_{\text{seq}}} \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top p(u_{1:n_{\text{seq}}})$$

Characterizing $p(u_{1:n_{\text{seq}}}) \in \mathcal{P}_{\mathcal{C}}$:

- ullet p nonnegative,
- ullet p is shift invariant.

Problem

Design $u_{1:n_{\text{seq}}}^{\text{opt}} \in \mathcal{C}^{n_{\text{seq}}}$ as a realization from $p^{\text{opt}}(u_{1:n_{\text{seq}}})$, where

$$p^{\mathrm{opt}}(u_{1:n_{\mathrm{seq}}}) := \arg\max_{p \in \mathcal{P}_{\mathcal{C}}} h(\mathcal{I}_F(p))$$

where $h: \mathbb{R}^{n_{\theta} \times n_{\theta}} \to \mathbb{R}$ is a matrix concave function, and

$$\mathcal{I}_F(p) = \frac{1}{\lambda_e} \sum_{u_{1:n_{\text{seq}}} \in \mathcal{C}^{n_{\text{seq}}}} \sum_{t=1}^{n_{\text{seq}}} \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top p(u_{1:n_{\text{seq}}})$$

Input design based on graph theory

Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work

Input design problem

Problem

Design $u_{1:n_{\text{seq}}}^{\text{opt}} \in \mathcal{C}^{n_{\text{seq}}}$ as a realization from $p^{\text{opt}}(u_{1:n_{\text{seq}}})$, where

$$p^{\text{opt}}(u_{1:n_{\text{seq}}}) := \arg \max_{p \in \mathcal{P}_{\mathcal{C}}} h(\mathcal{I}_F(p))$$

where $h: \mathbb{R}^{n_{\theta} \times n_{\theta}} \to \mathbb{R}$ is a matrix concave function, and

$$\mathcal{I}_F(p) = \frac{1}{\lambda_e} \sum_{u_{1:n_{\text{seq}}} \in \mathcal{C}^{n_{\text{seq}}}} \sum_{t=1}^{n_{\text{seq}}} \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top p(u_{1:n_{\text{seq}}})$$

Issues:

- 1. $\mathcal{I}_F(p)$ requires a sum of n_{seq} -dimensional terms (n_{seq} large).
- 2. How could we represent an element in $\mathcal{P}_{\mathcal{C}}$?

Input design problem

Solving the issues:

1. $\mathcal{I}_F(p)$ requires a sum of n_{seq} -dimensional terms (n_{seq} large).

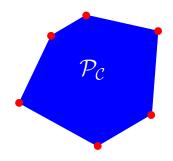
Assumption

 $u_{1:n_{
m seq}}$ is a realization of a stationary process with memory n_m $(n_m < n_{
m seq})$.

 $\Rightarrow \mathcal{I}_F(p)$ requires a sum of n_m -dimensional terms.

Minimum n_m : related with the memory of the system.

Input design problem



Solving the issues:

2. How could we represent an element in $\mathcal{P}_{\mathcal{C}}$?

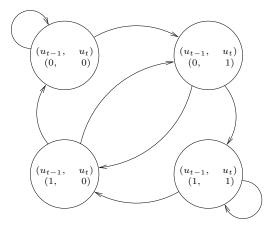
$\mathcal{P}_{\mathcal{C}}$ is a polyhedron.

 $\mathcal{V}_{\mathcal{P}_{\mathcal{C}}}$: Set of extreme points of $\mathcal{P}_{\mathcal{C}}$.

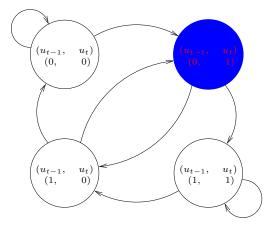
 $\Rightarrow \mathcal{P}_{\mathcal{C}}$ can be described as a convex combination of $\mathcal{V}_{\mathcal{P}_{\mathcal{C}}}.$

The elements in $\mathcal{V}_{\mathcal{P}_{\mathcal{C}}}$ can be found by using Graph theory!

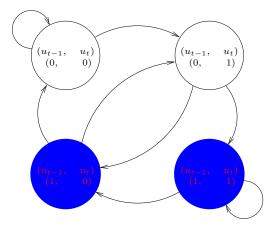
Example: de Bruijn graph, $C := \{0, 1\}$, $n_m := 2$.



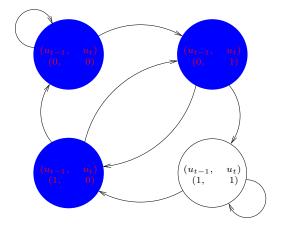
Example: de Bruijn graph, $\mathcal{C}:=\{0,\,1\}$, $n_m:=2$.



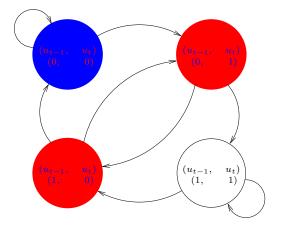
Example: de Bruijn graph, $\mathcal{C}:=\{0,\,1\}$, $n_m:=2$.



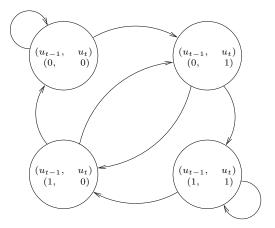
Example: de Bruijn graph, $\mathcal{C}:=\{0,\,1\}$, $n_m:=2$.



Example: de Bruijn graph, $\mathcal{C}:=\{0,\,1\}$, $n_m:=2$.



Example: de Bruijn graph, $C := \{0, 1\}$, $n_m := 2$.



There are algorithms to find elementary cycles (Johnson 1975, Tarjan 1972).

Once $v_i \in \mathcal{V}_{\mathcal{P}_{\mathcal{C}}}$ is known

- \Rightarrow The distribution for each v_i is known.
- \Rightarrow An input signal $\{u_t^i\}_{t=0}^{t=N}$ can be drawn from v_i .

Therefore,

$$\mathcal{I}_{F}^{(i)} := \frac{1}{\lambda_{e}} \sum_{u_{1:n_{m}} \in \mathcal{C}^{n_{m}}} \sum_{t=1}^{n_{m}} \psi_{t}^{\theta_{0}}(u_{t}) \psi_{t}^{\theta_{0}}(u_{t})^{\top} v_{i}(u_{1:n_{m}})$$

$$\approx \frac{1}{\lambda_{e}} \sum_{t=1}^{N} \psi_{t}^{\theta_{0}}(u_{t}) \psi_{t}^{\theta_{0}}(u_{t})^{\top}$$

for all $v_i \in \mathcal{V}_{\mathcal{P}_{\mathcal{C}}}$.

Therefore,

$$\mathcal{I}_{F}^{(i)} := \frac{1}{\lambda_{e}} \sum_{u_{1:n_{m}} \in \mathcal{C}^{n_{m}}} \sum_{t=1}^{n_{m}} \psi_{t}^{\theta_{0}}(u_{t}) \psi_{t}^{\theta_{0}}(u_{t})^{\top} v_{i}(u_{1:n_{m}})$$

$$\approx \frac{1}{\lambda_{e}} \sum_{t=1}^{N} \psi_{t}^{\theta_{0}}(u_{t}) \psi_{t}^{\theta_{0}}(u_{t})^{\top}$$

for all $v_i \in \mathcal{V}_{\mathcal{P}_{\mathcal{C}}}$.

The sum is approximated by Monte-Carlo!

Input design based on graph theory

To design an experiment in C^{n_m} :

- 1. Compute all the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$.
- 2. Generate the input signals $\{u_t^i\}_{t=0}^{t=N}$ from the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$, for each $i\in\{1,\,\ldots,\,n_{\mathcal{V}}\}$.
- 3. For each $i \in \{1, \ldots, n_{\mathcal{V}}\}$, approximate $\mathcal{I}_F^{(i)}$ by using

$$\mathcal{I}_F^{(i)} \approx \frac{1}{\lambda_e N} \sum_{t=1}^N \psi_t^{\theta_0}(u_t) \psi_t^{\theta_0}(u_t)^\top$$

Input design based on graph theory

To design an experiment in C^{n_m} :

4. Define
$$\gamma:=\{\alpha_1,\ldots,\,\alpha_{n_{\mathcal{V}}}\}\in\mathbb{R}^{n_{\mathcal{V}}}.$$
 Solve
$$\gamma^{\mathrm{opt}}:=\arg\max_{\gamma\in\mathbb{R}^{n_{\mathcal{V}}}}h(\mathcal{I}_F^{\mathrm{app}}(\gamma))$$
 where
$$\mathcal{I}_F^{\mathrm{app}}(\gamma):=\sum_{i=1}^{n_{\mathcal{V}}}\alpha_i\,\mathcal{I}_F^{(i)}$$

$$\sum_{i=1}^{n_{\mathcal{V}}} lpha_i = 1$$
 $lpha_i \geq 0\,, ext{ for all } i \in \{1,\dots,n_{\mathcal{V}}\}$

Input design based on graph theory

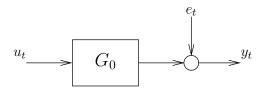
To design an experiment in C^{n_m} :

5. The optimal pmf p^{opt} is given by

$$p^{\text{opt}} = \sum_{i=1}^{n_{\mathcal{V}}} \alpha_i^{\text{opt}} \, v_i$$

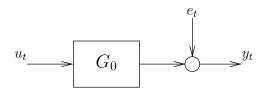
6. Sample $u_{1:n_{\text{seq}}}$ from p^{opt} using Markov chains.

 $\mathcal{I}_F^{\mathrm{app}}(\gamma)$ linear in the decision variables \Rightarrow The problem is convex!



$$G(u_t; \theta) = \begin{cases} x_{t+1} = \frac{1}{\theta_1 + x_t^2} + u_t \\ y_t = \theta_2 x_t^2 + e_t \\ x_1 = 0 \end{cases}$$

with $\theta = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^\top = \theta_0 = \begin{bmatrix} 0.8 & 2 \end{bmatrix}^\top$. e_t : white noise, Gaussian, zero mean, variance $\lambda_e = 1$.



$$G(u_t; \theta) = \begin{cases} x_{t+1} = \frac{1}{\theta_1 + x_t^2} + u_t \\ y_t = \theta_2 x_t^2 + e_t \\ x_1 = 0 \end{cases}$$

with
$$\theta = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^\top = \theta_0 = \begin{bmatrix} 0.8 & 2 \end{bmatrix}^\top$$
. We consider $h(\cdot) = \log \det(\cdot)$, and $n_{\text{seq}} = 10^4$.

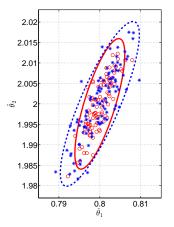
$$G(u_t; \theta) = \begin{cases} x_{t+1} = \frac{1}{\theta_1 + x_t^2} + u_t \\ y_t = \theta_2 x_t^2 + e_t \\ x_1 = 0 \end{cases}$$

Results:

$h(\mathcal{I}_F)$	Case 1	Case 2	Case 3	Binary
$\log\{\det(\mathcal{I}_F)\}$	3.82	4.50	4.48	3.47

Case 1:
$$n_m=2$$
, $\mathcal{C}=\{-1,\,0,\,1\}$
Case 2: $n_m=1$, $\mathcal{C}=\{-1,\,-1/3,\,1/3,\,1\}$
Case 3: $n_m=1$, $\mathcal{C}=\{-1,\,-0.5,\,0,\,0.5,\,1\}$

Results (95 % confidence ellipsoids):



Red: Case 2; Blue: Binary input.

Input design based on graph theory

Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work

Extension to nonlinear SSM

Nonlinear state space model:

$$x_0 \sim \mu(x_0)$$

$$x_t | x_{t-1} \sim f_{\theta}(x_t | x_{t-1}, u_{t-1})$$

$$y_t | x_t \sim g_{\theta}(y_t | x_t, u_t)$$

where $\theta \in \Theta$.

 $-f_{\theta}$, g_{θ} , μ : pdfs

 $-x_t$: states

 $-u_t$: input

 $-y_t$: system output

Goal: Design

 $u_{1:n_{\text{seq}}} := (u_1, \ldots, u_{n_{\text{seq}}})$

as a realization of a stationary process $maximizing \mathcal{I}_F$.

Extension to nonlinear SSM

Here,

$$\mathcal{I}_F = \mathbf{E} \left\{ \mathcal{S}(\theta_0) \mathcal{S}^\top(\theta_0) \right\}$$
$$\mathcal{S}(\theta_0) = \left. \nabla_{\theta} \log p_{\theta}(y_{1:n_{\text{seq}}} | u_{1:n_{\text{seq}}}) \right|_{\theta = \theta_0}$$

Design
$$u_{1:n_{\text{seq}}} \in \mathbb{R}^{n_{\text{seq}}} \Leftrightarrow \text{Design } P(u_{1:n_{\text{seq}}}) \in \mathcal{P}.$$

Extension to nonlinear SSM

Fisher's identity:

$$\nabla_{\theta} \log p_{\theta}(y_{1:T}|u_{1:T}) = \mathbf{E} \left\{ \nabla_{\theta} \log p_{\theta}(x_{1:T}, y_{1:T}|u_{1:T}) \middle| y_{1:T}, u_{1:T} \right\}$$

$$\nabla_{\theta} \log p_{\theta}(y_{1:T}|u_{1:T}) = \sum_{t=1}^{T} \int_{\mathcal{X}^2} \xi_{\theta}(x_{t-1:t}, u_t) p_{\theta}(x_{t-1:t}|y_{1:T}) dx_{t-1:t}$$

with

$$\xi_{\theta}(x_{t-1:t}, u_t) = \nabla_{\theta} \Big[\log f_{\theta}(x_t | x_{t-1}, u_{t-1}) + \log g_{\theta}(y_t | x_t, u_t) \Big]$$

Assumption

$$u_t \in \mathcal{C}$$
 (\mathcal{C} finite set)

Extension to nonlinear SSM

Recall $\mathcal{P}_{\mathcal{C}}$:

- ullet p nonnegative,
- $\sum p(\mathbf{x}) = 1$,
- ullet p is shift invariant.

Extension to nonlinear SSM

Problem

Design $u_{1:n_{\text{seq}}}^{\text{opt}} \in \mathcal{C}^{n_{\text{seq}}}$ as a realization from $p^{\text{opt}}(u_{1:n_{\text{seq}}})$, where

$$p^{\mathrm{opt}}(u_{1:n_{\mathrm{seq}}}) := \arg \max_{p \in \mathcal{P}_{\mathcal{C}}} h(\mathcal{I}_F(p))$$

where $h: \mathbb{R}^{n_{\theta} \times n_{\theta}} \to \mathbb{R}$ is a matrix concave function, and

$$\mathcal{I}_F(p) = \mathbf{E} \left\{ \mathcal{S}(\theta_0) \mathcal{S}^\top(\theta_0) \right\}$$

Input design problem for nonlinear SSM

Problem

Design $u_{1:n_{\text{seq}}}^{\text{opt}} \in \mathcal{C}^{n_{\text{seq}}}$ as a realization from $p^{\text{opt}}(u_{1:n_{\text{seq}}})$, where

$$p^{\text{opt}}(u_{1:n_{\text{seq}}}) := \arg \max_{p \in \mathcal{P}_{\mathcal{C}}} h(\mathcal{I}_F(p))$$

where $h: \mathbb{R}^{n_{\theta} \times n_{\theta}} \to \mathbb{R}$ is a matrix concave function, and

$$\mathcal{I}_F(p) = \mathbf{E}\left\{\mathcal{S}(\theta_0)\mathcal{S}^\top(\theta_0)\right\}$$

Issues:

- 1. How could we represent an element in $\mathcal{P}_{\mathcal{C}}$? \Rightarrow Use the graph theory approach!
- 2. How could we compute $\mathcal{I}_F(p)$?

To design an experiment in C^{n_m} :

- 1. Compute all the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$.
- 2. Generate the input signals $\{u_t^i\}_{t=0}^{t=N}$ from the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$, for each $i\in\{1,\ldots,n_{\mathcal{V}}\}$.
- 3. For each $i \in \{1, \ldots, n_{\mathcal{V}}\}$, approximate $\mathcal{I}_F^{(i)}$ by using

$$egin{aligned} \mathcal{I}_F^{(i)} &:= \mathbf{E}_{v_i(u_{1:n_m})} \left\{ \mathcal{S}(heta_0) \mathcal{S}^ op (heta_0)
ight\} \ &pprox ext{(new expression required!)} \end{aligned}$$

Estimating \mathcal{I}_F

Approximate \mathcal{I}_F as

$$\hat{\mathcal{I}}_F := \frac{1}{M} \sum_{m=1}^M \mathcal{S}_m(\theta_0) \mathcal{S}_m^{\top}(\theta_0)$$

- Difficulty: $S_m(\theta_0)$ is not available.
- Solution: Estimate $S_m(\theta_0)$ using particle methods!

Particle methods to estimate $\mathcal{S}_m(heta_0)$

- Goal: Approximate $\{p_{\theta}(x_{1:t}|y_{1:t})\}_{t\geq 1}$.
- $\{x_{1:t}^{(i)}, w_t^{(i)}\}_{i=1}^N$: Particle system.
- $\bullet \ \, \mathsf{Approach} \colon \, \mathsf{Auxiliary} \, \, \mathsf{particle} \, \, \mathsf{filter} \, + \, \mathsf{Fixed}\text{-lag smoother}. \\$

Particle methods to estimate $\mathcal{S}_m(heta_0)$

Estimate $S_m(\theta_0)$ as

$$\hat{S}_m(\theta_0) := \sum_{t=1}^T \sum_{i=1}^N w_{\kappa_t}^{(i)} \xi_{\theta_0}(x_{t-1}^{a_{\kappa_t, t-1}^{(i)}}, x_t^{a_{\kappa_t, t}^{(i)}}, u_t)$$

where

$$\xi_{\theta}(x_{t-1:t}, u_t) = \nabla_{\theta} \Big[\log f_{\theta}(x_t | x_{t-1}, u_{t-1}) + \log g_{\theta}(y_t | x_t, u_t) \Big]$$

To design an experiment in C^{n_m} :

- 1. Compute all the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$.
- 2. Generate the input signals $\{u_t^i\}_{t=0}^{t=N}$ from the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$, for each $i\in\{1,\,\ldots,\,n_{\mathcal{V}}\}$.
- 3. For each $i \in \{1, \ldots, n_{\mathcal{V}}\}$, approximate $\mathcal{I}_F^{(i)}$ by using

$$\mathcal{I}_F^{(i)} := \mathbf{E}_{v_i(u_{1:n_m})} \left\{ \mathcal{S}(\theta_0) \mathcal{S}^\top(\theta_0) \right\}$$
$$\approx \frac{1}{M} \sum_{m=1}^M \hat{\mathcal{S}}_m(\theta_0) \hat{\mathcal{S}}_m^\top(\theta_0)$$

To design an experiment in C^{n_m} :

4. Define
$$\gamma := \{\alpha_1, \ldots, \alpha_{n_{\mathcal{V}}}\} \in \mathbb{R}^{n_{\mathcal{V}}}$$
.

For $k \in \{1, \ldots, K\}$, solve

$$\gamma^{\text{opt},k} := \arg \max_{\gamma \in \mathbb{R}^{n_{\mathcal{V}}}} h(\mathcal{I}_F^{\text{app},k}(\gamma_k))$$

where

$$\begin{split} \mathcal{I}_F^{\mathrm{app},k}(\gamma_k) &:= \sum_{i=1}^{n_{\mathcal{V}}} \alpha_{i,k} \, \mathcal{I}_F^{(i),k} \\ &\sum_{i=1}^{n_{\mathcal{V}}} \alpha_{i,k} = 1 \\ &\alpha_{i,k} \geq 0 \,, \text{ for all } i \in \{1,\dots,\,n_{\mathcal{V}}\} \end{split}$$

Compute $\overline{\gamma}$ as the sample mean of $\{\gamma^{\mathrm{opt},k}\}_{k=1}^K$.

To design an experiment in C^{n_m} :

5. The optimal pmf p^{opt} is given by

$$p^{\text{opt}} = \sum_{i=1}^{n_{\mathcal{V}}} \overline{\alpha}_i^{\text{opt}} v_i$$

6. Sample $u_{1:n_{\text{seq}}}$ from p^{opt} using Markov chains.

 $\mathcal{I}_F^{\mathrm{app}}(\gamma)$ linear in the decision variables \Rightarrow The problem is convex!

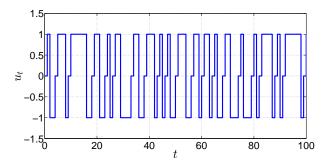
Nonlinear state space model:

$$x_{t+1} = \theta_1 x_t + \frac{x_t}{\theta_2 + x_t^2} + u_t + v_t, \qquad v_t \sim \mathcal{N}(0, 0.1^2)$$
$$y_t = \frac{1}{2} x_t + \frac{2}{5} x_t^2 + e_t, \qquad e_t \sim \mathcal{N}(0, 0.1^2)$$

where
$$\theta = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^{\top}$$
, $\theta_0 = \begin{bmatrix} 0.7 & 0.6 \end{bmatrix}^{\top}$.

Input design: $n_{\text{seq}} = 5 \cdot 10^3$, $n_m = 2$, $\mathcal{C} = \{-1, 0, 1\}$, and $h(\cdot) = \log \det(\cdot)$.

Input sequence:



Results:

Input $/$ $h(\widehat{\mathcal{I}}_F)$	$\log \det(\widehat{\mathcal{I}}_F)$
Optimal	25.34
Binary	24.75
Uniform	24.38

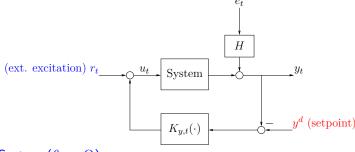
Problem formulation for output-error models

Input design based on graph theory

Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work



System $(\theta_0 \in \Theta)$:

$$x_{t+1} = A_{\theta_0} x_t + B_{\theta_0} u_t$$
$$y_t = C_{\theta_0} x_t + \nu_t$$
$$\nu_t = H(q; \theta_0) e_t$$

 $\{e_t\}$: white noise, known distribution.

Feedback: $u_t = r_t + K_{v,t}(y_t - y^d)$

Model:

$$x_{t+1} = A(\theta)x_t + B(\theta)u_t$$
$$y_t = C(\theta)x_t + \nu_t$$
$$\nu_t = H(q; \theta)e_t$$

 $\theta \in \Theta$.

Goal: Perform an experiment to obtain $\hat{\theta}_{n_{\text{seq}}}$. \Rightarrow design $r_{1:n_{\text{seq}}}$!

Requirements:

- 1. y_t , u_t should not be perturbed excessively.
- 2. $\hat{\theta}_{n_{\text{seq}}}$ must satisfy quality constraints.

Minimize control objective:

$$J = \mathbf{E} \left\{ \sum_{t=1}^{n_{\text{seq}}} \left\| y_t - y^d \right\|_Q^2 + \left\| u_t - u_{t-1} \right\|_R^2 \right\}$$

Requirements:

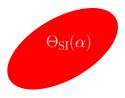
1. y_t , u_t should not be perturbed excessively.

Probabilistic bounds:

$$\mathbf{P}\{|y_t - y^d| \le y_{\text{max}}\} > 1 - \epsilon_y$$

$$\mathbf{P}\{|u_t| \le u_{\text{max}}\} > 1 - \epsilon_x$$

for
$$t = 1, \ldots, n_{\text{seq}}$$



Requirements:

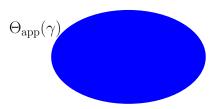
2. $\hat{\theta}_{n_{\mathrm{seq}}}$ must satisfy quality constraints.

Maximum likelihood: As $n_{\text{seq}} \to \infty$, we have:

$$\sqrt{n_{ ext{seq}}} \left(\hat{ heta}_{n_{ ext{seq}}} - heta_0
ight) \in \mathit{AsN}(0, \{\mathcal{I}_F^e\}^{-1})$$

⇒ Identification set:

$$\Theta_{\mathrm{SI}}(\alpha) = \left\{ \theta : (\theta - \theta_0)^{\top} \mathcal{I}_F^e \left(\theta - \theta_0 \right) \le \chi_{\alpha}^2(n_{\theta}) \right\}$$



Requirements:

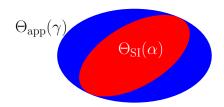
2. $\hat{\theta}_{n_{\mathrm{seq}}}$ must satisfy quality constraints.

Quality constraint: Application set

$$\Theta(\gamma) = \left\{ \theta : V_{\text{app}}(\theta) \le \frac{1}{\gamma} \right\}$$

Relaxation: Application ellipsoid

$$\Theta_{\mathrm{app}}(\gamma) := \left\{ \theta : (\theta - \theta_0)^\top \left. \nabla_{\theta}^2 V_{\mathrm{app}}(\theta) \right|_{\theta = \theta_0} (\theta - \theta_0) \le \frac{2}{\gamma} \right\}$$



Requirements:

2. $\hat{\theta}_{n_{\mathrm{seq}}}$ must satisfy quality constraints.

Quality constraint:

$$\Theta_{\rm SI}(\alpha) \subseteq \Theta_{\rm app}(\gamma)$$

achieved by

$$\frac{1}{\chi_{\alpha}^{2}(n_{\theta})} \mathcal{I}_{F}^{e} \succeq \frac{\gamma}{2} \left. \nabla_{\theta}^{2} V_{\text{app}}(\theta) \right|_{\theta = \theta_{0}}$$

Optimization problem:

$$\begin{split} \min_{\left\{r_{t}\right\}_{t=1}^{n_{\mathrm{seq}}}} & J = \mathbf{E} \left\{ \sum_{t=1}^{n_{\mathrm{seq}}} \left\|y_{t} - y_{d}\right\|_{Q}^{2} + \left\|\Delta u_{t}\right\|_{R}^{2} \right\} \\ \text{s. t. System constraints} & \mathbf{P}\{\left|y_{t} - y^{d}\right| \leq y_{\mathrm{max}}\} > 1 - \epsilon_{y} \\ & \mathbf{P}\{\left|u_{t}\right| \leq u_{\mathrm{max}}\} > 1 - \epsilon_{x} \\ & \mathcal{I}_{F} \succeq \frac{\gamma \chi_{\alpha}^{2}(n_{\theta})}{2} \nabla_{\theta}^{2} V_{\mathrm{app}}(\theta) \end{split}$$

- Difficulty: \mathbf{P} (and \mathcal{I}_F^e) hard to optimize.
- Solution: Use the graph-theory approach!

Graph theory approach:

 $r_{1:n_{\text{seq}}}$ realization from $p(r_{1:n_m})$ with alphabet \mathcal{C} .

To design an experiment in C^{n_m} :

- 1. Compute all the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$.
- 2. Generate the signals $\{r_t^i\}_{t=0}^{t=N}$ from the prime cycles of $\mathcal{G}_{\mathcal{C}^{n_m}}$, for each $i\in\{1,\ldots,n_{\mathcal{V}}\}$.

Graph theory approach:

 $r_{1:n_{ ext{seq}}}$ realization from $p(r_{1:n_m})$ with alphabet \mathcal{C} .

Given $e_{1:N_{\text{sim}}}$, $r_{1:N_{\text{sim}}}^{(j)}$, approximate

$$J^{(j)} \approx \frac{1}{N_{\text{sim}}} \sum_{t=1}^{N_{\text{sim}}} \left\| y_t^{(j)} - y^d \right\|_Q^2 + \left\| u_t^{(j)} - u_{t-1}^{(j)} \right\|_R^2$$

$$\mathbf{P}_{e_t,r_t^{(j)}}\{|u_t^{(j)}|\leq u_{\max}\}pprox \mathsf{Monte Carlo}$$

$$\mathbf{P}_{e_t,r_t^{(j)}}\{|y_t^{(j)}-y^d|\leq y_{\max}\}pprox \mathsf{Monte}$$
 Carlo

 $\mathcal{I}_F^{(j)}$ computed as in previous parts.

Optimization problem (graph-theory):

$$\min_{\{\beta_1, \dots, \beta_{n_v}\}} \sum_{j=1}^{n_v} \beta_j J^{(j)}$$

s.t. System constraints

Constraints on $\{\beta_j\}_{j=1}^{n_v}$

$$\sum_{j=1}^{n_v} \beta_j \mathbf{P}_{e_t, r_t^{(j)}} \{ |u_t^{(j)}| \le u_{\text{max}} \} > 1 - \epsilon_x$$

$$\sum_{j=1}^{n_v} \beta_j \mathbf{P}_{e_t, r_t^{(j)}} \{ |y_t^{(j)} - y^d| \le y_{\text{max}} \} > 1 - \epsilon_y$$

$$\sum_{j=1}^{n_v} \beta_j \mathcal{I}_F^{(j)} \succeq \frac{\gamma \chi_{\alpha}^2(n)}{2n_{\text{seq}}} \nabla_{\theta}^2 V_{\text{app}}(\theta)$$

Optimal pmf:

$$p^{\text{opt}} := \sum_{j=1}^{n_v} \beta_j^{\text{opt}} p_j$$

Consider the open-loop, SISO state space system

$$x_{t+1} = \theta_2^0 x_t + u_t$$
$$y_t = \theta_1^0 x_t + e_t$$

$$\begin{bmatrix} \theta_1^0 & \theta_2^0 \end{bmatrix}^\top = \begin{bmatrix} 0.6 & 0.9 \end{bmatrix}^\top.$$

Input:

$$u_t = r_t - k_y y_t$$

 $k_y = 0.5$ known.

Goal: Estimate $\begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^{\top}$ using indirect identification.

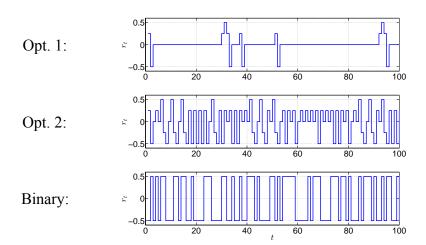
Design $\{r_t\}_{t=1}^{500}$, $n_m = 2$, $r_t \in \mathcal{C} = \{-0.5, -0.25, 0, 0.25, 0.5\}$.

Performance degradation:

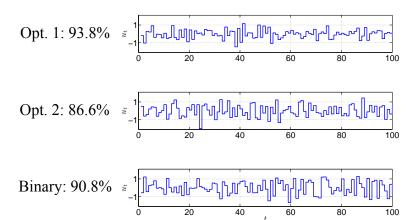
$$V_{\text{app}}(\theta) = \frac{1}{500} \sum_{t=1}^{500} ||y_t(\theta_0) - y_t(\theta)||_2^2$$

- $y^d = 0$
- \bullet $\epsilon_y = \epsilon_x = 0.07$
- $y_{\text{max}} = 2$, $u_{\text{max}} = 1$

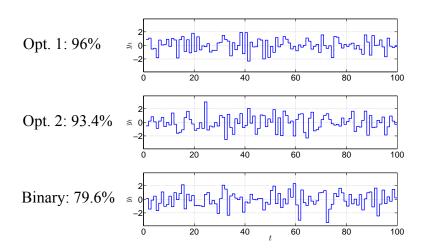
Reference:



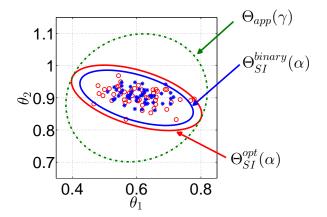
Input:



Output:



Application and identification ellipsoids: (98% confidence level)



Problem formulation for output-error models

Input design based on graph theory

Extension to nonlinear SSN

Closed-loop application oriented input design

Conclusions and future work

Conclusions

- A new method for input design was introduced.
- The method can be used for nonlinear systems.
- Convex problem even for nonlinear systems.

Future work

- Reducible Markov chains.
- Computational complexity.
- Robust input design.
- Application oriented input design for MPC.

Thanks for your attention.

Optimal input design for nonlinear dynamical systems: a graph-theory approach

Patricio E. Valenzuela

Department of Automatic Control and ACCESS Linnaeus Centre KTH Royal Institute of Technology, Stockholm, Sweden

Seminar Uppsala university January 16, 2015

Outline

Problem formulation for output-error models

Input design based on graph theory

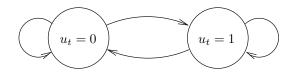
Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work

Appendix I: Graph theory in input design

Example: Elementary cycles for a de Bruijn graph, $\mathcal{C}:=\{0,1\}$, $n_m:=1$.



One elementary cycle: z = (0, 1, 0).

 \Rightarrow Prime cycles for a de Bruijn Graph, $\mathcal{C} := \{0, 1\}$, $n_m := 2$: $v_1 = ((0, 1), (1, 0), (0, 1))$.

Appendix II: Graph theory in input design

Example: Generation of input signal from a prime cycle.

Consider a de Bruijn graph, $C := \{0, 1\}$, $n_m := 2$.

- $v_1 = ((0, 1), (1, 0), (0, 1))$
- $\{u_t^1\}_{t=0}^{t=N}$: Take last element of each node.

Finally,

$$\{u_t^i\}_{t=0}^{t=N} = \{1, 0, 1, 0, \dots, ((-1)^N + 1)/2\}$$

Appendix III: Building A

ullet For $i\in\mathcal{C}^{n_m}$, define

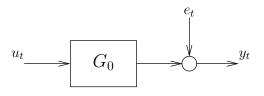
$$\mathcal{A}_i := \{ j \in \mathcal{C}^{n_m} : (j, i) \in \mathcal{E} \}.$$

(the set of ancestors of i).

• For each $i \in \mathcal{C}^{n_m}$, let

$$A_{ij} = \begin{cases} \frac{\mathbf{P}\{i\}}{\sum\limits_{k \in \mathcal{A}_i} \mathbf{P}\{k\}} \,, & \text{if } j \in \mathcal{A}_i \text{ and } \sum\limits_{k \in \mathcal{A}_i} \mathbf{P}\{k\} \neq 0 \\ \frac{1}{\#\mathcal{A}_i} \,, & \text{if } j \in \mathcal{A}_i \text{ and } \sum\limits_{k \in \mathcal{A}_i} \mathbf{P}\{k\} = 0 \\ 0 \,, & \text{otherwise.} \end{cases}$$

Apendix IV: Example nonlinear case



$$G_0(u_t) = G_1(q, \theta) u_t + G_2(q, \theta) u_t^2$$

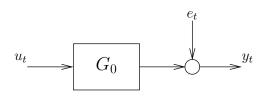
where

$$G_1(q, \theta) = \theta_1 + \theta_2 q^{-1}$$

 $G_2(q, \theta) = \theta_3 + \theta_4 q^{-1}$

 e_t : Gaussian white noise, zero mean, variance $\lambda_e=1$.

Apendix IV: Example nonlinear case



$$G_0(u_t) = G_1(q, \theta) u_t + G_2(q, \theta) u_t^2$$

where

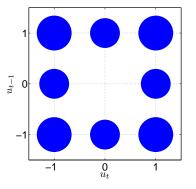
$$G_1(q, \theta) = \theta_1 + \theta_2 q^{-1}$$

 $G_2(q, \theta) = \theta_3 + \theta_4 q^{-1}$

We consider $h(\cdot)=\det(\cdot)$, $c_{\rm seq}=3$, $n_m=2$, $\mathcal{C}:=\{-1,\,0,\,1\}$, and $N=5\cdot 10^3$.

Apendix IV: Example nonlinear case

Stationary probabilities:



- $\det(\mathcal{I}_F^{app}) = 0.1796.$
- Results consistent with previous contributions (Larsson et al. 2010).

Auxiliary particle filter:

$$\hat{p}_{\theta}(x_{1:t}|y_{1:t}) := \sum_{i=1}^{N} \frac{w_t^{(i)}}{\sum_{k=1}^{N} w_t^{(k)}} \delta(x_{1:t} - x_{1:t}^{(i)})$$

 $\{x_{1:t}^{(i)}, w_t^{(i)}\}_{i=1}^N$: Particle system.

Two step procedure to compute $\{x_{1:t}^{(i)}, w_t^{(i)}\}_{i=1}^N$:

- 1. Sampling/propagation.
- 2. Weighting.

Two step procedure to compute $\{x_{1:t}^{(i)}, w_t^{(i)}\}_{i=1}^N$:

1. Sampling/propagation:

$$\{a_t^{(i)}, x_t^{(i)}\} \sim \frac{w_{t-1}^{a_t}}{\sum_{k=1}^{N} w_{t-1}^{(k)}} R_{\theta,t}(x_t | x_{t-1}^{a_t}, u_{t-1})$$

Two step procedure to compute $\{x_{1:t}^{(i)}, w_t^{(i)}\}_{i=1}^N$:

2. Weighting:

$$w_t^{(i)} := \frac{g_{\theta}(y_t|x_t^{(i)}, u_t) f_{\theta}(x_t|x_{t-1}^{(i)}, u_{t-1})}{R_{\theta, t}(x_t|x_{t-1}^{(i)}, u_{t-1})}$$

Difficulty: Auxiliary particle filter suffers particle degeneracy.

Solution: Use fixed-lag smoother.

Main idea FL-smoother:

$$p_{\theta}(x_t|y_{1:T}, u_{1:T}) \approx p_{\theta}(x_t|y_{1:\kappa_t}, u_{1:\kappa_t})$$

for $\kappa_t = \min(t + \Delta, T)$, for some fixed-lag $\Delta > 0$.

Apendix VI: Equivalence time and frequency domain

	Frequency	Time
Design variable	$\Phi_u(\omega)$	$p(u_{1:n_m})$
Restrictions	$\Phi_u(\omega) \ge 0$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_u(\omega) d\omega \le 1$	$p \ge 0$ $\sum_{u_{1:n_m}} p(u_{1:n_m}) = 1$ $p \text{ stationary}$
Information matrix	$\mathcal{I}_F(\Phi_u)$	$\mathcal{I}_F(p)$