Optimal input design for nonlinear dynamical
systems: a graph-theory approach

Patricio E. Valenzuela

RovAL INSTITUTE Department of Automatic Control and ACCESS Linnaeus Centre
KTH Royal Institute of Technology, Stockholm, Sweden

Seminar Uppsala university
January 16, 2015
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@ System identification: Modeling based on input-output data.

@ Basic entities: data set, model structure, identification method.



System identification

The maximum likelihood method:

A

anseq = arg Iarlea@){ le (yl:nseq)

where
lg(Y1:n4eq) = 108 PO(Y1:necq)
As ngeq — 00, we have:
° énseq — b

9 |\ /Mseq (&nseq — 90> — Normal with zero mean and
covariance {Z§}~!



System identification

9 |\ Mgeq (Hnseq — 90) — Normal with zero mean and

covariance {Z§}~!
ul:nseq}

Covariance matrix of | /Mgeq (énseq — 00> affected by u1.p,,!

where

0
I = ES —lp(Y1:n, —lo(Y1:n,
F { 69 G(yl beq) 9:90 aHT 0(y1 aeq)

6=06q

Different UlingeqS = different Z%s.



Input design for dynamic systems

@ Input design: Maximize information from an experiment.

@ Existing methods: focused on linear systems.

@ Recent developments for nonlinear systems (Hjalmarsson 2007,
Larsson 2010, Gopaluni 2011, De Cock-Gevers-Schoukens 2013,
Forgione-Bombois-Van den Hof-Hjalmarsson 2014).



Input design for dynamic systems

Challenges for nonlinear systems:
@ Problem complexity (usually non-convex).
@ Model restrictions.

@ Input restrictions.

How could we overcome these limitations?



Summary

1. We present a method for input design for dynamic systems.

2. The method is also suitable for nonlinear systems.



Outline

Problem formulation for output-error models
Input design based on graph theory
Extension to nonlinear SSM

Closed-loop application oriented input design

Conclusions and future work



ROVAL INSTITUTE
OF TECHNOLOGY

Problem formulation for output-error models



Problem formulation for output-error models

Gy is a system, where:

-e;: white noise (variance \.)
-ug: input
-y system output

€t
Yt
1\
Goal: Design
Ulingeq i= (UL, -y Ungey)

as a realization of a stationary
process maximizing L.
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Here,

Nseq
= —E{Z¢ up ) (

-5/ Gt

P (ug) = Vit (ut)lg—g,
Ge(u) = G(ug; 0)

Design u1:n,., € R™ < Design P(u1:n,.,) € P.

Problem formulation for output-error models

)

) dP('LLl nseq)
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Problem formulation for output-error models

Here,
Nseq
= _E {Z 1/1 (ut T/Jt ut) }
= 5. [ X vt )T aP i)
Assumption
up € C (C finite set)
1 Nseq
IF - )\_ Z Z 'l)b Ut wt ) (ulznseq)
€ Ulingeq EC504 t=1
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Problem formulation for output-error models

Characterizing p(u1:n,,) € Pe:

9@ p nonnegative,

° X p(x) =1,

@ p is shift invariant.
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ao,
=31 Problem formulation for output-error models

Problem

opt

Design uy,, . € C"*4 as a realization from PP (U1:ny., ), Where

PP (Ulingey) i= BTG max MZr(p))

where h : R">*™ — R is a matrix concave function, and

Nse
1 @l

Ir(p) =+ 2 > U )b (w)T plurn,)

€ Ul:ngeq €Cmsed t=1

14
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Input design based on graph theory



Input design problem

Problem

pt

Design uih, € C"™ as a realization from p°P*(u1.,., ), where

popt(urns@q)- arg]gé%}cch(l'p( D))

where h : R">*™ — R is a matrix concave function, and

Nse
1 @l

Ir(p) = . Z Z ¢ (ut th ) P(Uiingeq)

¢ ul:nseq €CMseq t=1

Issues:

1. Zp(p) requires a sum of ngq-dimensional terms (ngq large).

2. How could we represent an element in P¢?

16



Input design problem

Solving the issues:

1. Zr(p) requires a sum of ngq-dimensional terms (ng.q large).

Assumption

Ulingeq 1S @ realization of a stationary process with memory 1.,
(e

= T (p) requires a sum of n,,-dimensional terms.

Minimum n,,: related with the memory of the system.

17



Input design problem

Solving the issues:
2. How could we represent an element in P¢?

‘Pc is a polyhedron.
Vp.: Set of extreme points of P¢.
= Pc can be described as a convex combination of Vp,.

The elements in Vp, can be found by using Graph theory!
18



Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

Elements in Vp. < Prime cycles in Genm
Prime cycles in Genm < Elementary cycles in Gon,,—1)
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Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

Elements in Vp. < Prime cycles in Genm
Prime cycles in Genm < Elementary cycles in Gon,,—1)
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Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

Elements in Vp. < Prime cycles in Genm

Prime cycles in Genm < Elementary cycles in Gon,,—1)
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Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

4

Elements in Vp. < Prime cycles in Genm

Prime cycles in Genm < Elementary cycles in Gon,,—1)
22



Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

4

Elements in Vp. < Prime cycles in Genm
Prime cycles in Genm < Elementary cycles in Gon,,—1)
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Graph theory in input design

Example: de Bruijn graph, C := {0, 1}, n,, := 2.

@

There are algorithms to find elementary cycles (Johnson 1975,

Tarjan 1972).
24



Graph theory in input design

Once v; € Vp, is known

= The distribution for each v; is known.

= An input signal {u{}!=}" can be drawn from v;.

Therefore,

Il(ﬁ') = )\i Z 21/1 (u T/Jt ) vi(U1:n,, )

euln eCnm t=1

0o ut)T

Ae N =

for all v; € Vp,.
25



Graph theory in input design

Therefore,

= X S 080 (o

euln eCnrm t=1

0o ut)T

Ae N =

for all v; € Vp,.

The sum is approximated by Monte-Carlo!

) V3 (ulznm )
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Input design based on graph theory

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .
2. Generate the input signals {u{}!=}" from the prime cycles of

Genm, for each i € {1, ..., ny}.
3. For each i € {1, ..., ny}, approximate Ig) by using
N
I(Z Ut wt )

27



Input design based on graph theory

To design an experiment in C™™:

4. Define v :={ay,..., an,} € R™.
Solve

opt .__ T2PP
A e g e L)

where

ny )
() =) oIy
=1

ny
Zai =1
i=1
a; >0, forallie{l,..., ny}
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Input design based on graph theory

To design an experiment in C™™:

5. The optimal pmf p°P! is given by
ny
popt — Z a(_)pt vi
(2
=1
6. Sample uy.,,. from p°P' using Markov chains.
P seq

TP () linear in the decision variables = The problem is convex!
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Example |

€t
Ut GO O Yt
1 +
x = U
t+1 91 T :L'tZ t

Glus;6) = Yy = O 7 + e

xle

T T
with 6 = [91 02} — 0 = [0.8 2} .
e;: white noise, Gaussian, zero mean, variance A\, = 1.
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Example |

€t
Ut GO O Ui
1 +
X = —F u
t+1 91 T :L't2 t

G(ut; 0) = Yp = 92 x% + ey

xle

T T
with 0 = |01 62| =0 =08 2] .
We consider h(-) = logdet(-), and ngeq = 10%.
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Example |

Ti4l = 73— T Ut
* 91+x§

G (us; 0) = yr = O a7 + e

xr1 = 0
Results:

h(Zr) ‘Casel Case 2 Case 3 Binary
log{det(Zp)} | 382 450 448 347

Case 1: n,, =2,C={-1,0, 1}
Case 22 n,, = 1,C={-1, -1/3,1/3, 1}
Case 3: n,, = 1,C ={-1, —0.5, 0, 0.5, 1}
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Example |
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Results (95 % confidence ellipsoids):

2.02F

2.015¢

2.01r

2.005¢

0
N

1.995¢

1.99r

1.985r

1.98¢

0.79 0.8 0.81

Red: Case 2; Blue: Binary input.
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Extension to nonlinear SSM
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Extension to nonlinear SSM

Nonlinear state space model:

zo ~ (o)
x|zi—1 ~ folwe|ri—1,u—1)

yelze ~ go(ye|we, ut)

where 0 € ©.
Goal: Design
_fel 9o, K- pdfs
-2y states Ulingeq *— (ug, ..., Unseq)
-ug: input

-y¢: system output as a realization of a stationary

process maximizing L.
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Extension to nonlinear SSM

Here,

Tr = E{S(00)ST (60)}
5(90) = Vy ]'nge(yllnseq|u1:nseq)|€:€O

Design u1:n,., € R™ < Design P(uq.n,.,) € P.
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Extension to nonlinear SSM

Fisher's identity:

Vg log po(y1.rlur.r) = E {Vglog po(x1.1, yr.rlurr)|yrr, vir}

T

Vo log py(y1.7|urr) = Z/X? §o(ze—1:4, ut)po(Ti—1:¢y1.7)dT—124
=1

with

fe(xt—lm Ut) = Vy [log f0($t|xt—1aut—1) + logge(yt|xt,’ut)}

Assumption
up € C (C finite set)
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Extension to nonlinear SSM

Recall Pe:

@ p nonnegative,

° Yp(x)=1,

@ p is shift invariant.
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Extension to nonlinear SSM

Problem

opt
1:ng

Design uy}, . € C™< as a realization from PP (u1:p,., ), Where
PP (Uiingq) += arg max h(Zr(p))
PEPc
where h : R™*" — R is a matrix concave function, and

Zr(p) = E {S(60)S" (60) }

39



Input design problem for nonlinear SSM

Problem

pt

q o
Design wy.y, .

€ C"a as a realization from p°P*(uy.y,,, ), where

P (g, = h(Z
PP (Ulimgeq) 201 s (Zr(p))

where h : R">*™ — R is a matrix concave function, and
Ir(p) = E{S(00)S" (8)}

Issues:

1. How could we represent an element in Pc? = Use the
graph theory approach!

2. How could we compute Zp(p)?

40



Input design based on graph theory (revisited)

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .

2. Generate the input signals {ui}/=¥ from the prime cycles of
Genm, for each i € {1, ..., ny}.

i)

3. Foreach i € {1, ..., ny}, approximate II(J by using

73 = By ur) {S00)ST (80) }

~ (new expression required!)

41



Estimating Zr

Approximate Zr as

1 M
7 2 Sm(%) S (60)
m:l

o Difficulty: S,,(6p) is not available.

@ Solution: Estimate S,,(6p) using particle methods!

42



Particle methods to estimate S,,(6))

@ Goal: Approximate {pg(w1.t|y1:t) }t>1-
o (20 WY .

14 Wi }izq: Particle system.

@ Approach: Auxiliary particle filter 4+ Fixed-lag smoother.

43



Particle methods to estimate S,,(6))

Estimate S,,(0y) as

T N i) o
— -1 Kt
—ZZw €oo ( J’7t § ™ w)

t=11i=1

where

Eo(@i—1:4, ut) = Vg [1055 fo(xe|lwi—1,ue—1) + logge(ytm,ut)}
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Input design based on graph theory (revisited)

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .
2. Generate the input signals {ui}/= from the prime cycles of
Genm, for each i € {1, ..., ny}.

) by using

3. Foreach i € {1, ..., ny}, approximate Il(f
I == By urn,,) {S(00)ST (60) }

L I -
~— > 85n(00)S,,(00)
M m=1 "
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Input design based on graph theory (revisited)
To design an experiment in C™™:

4. Define v :={ay,..., an,} € R™.
For k€ {1, ..., K}, solve

opt,k . _ h 72PP:k
gl arg max h{Zp " (7))

where

Iapp7k S - I(Z)ﬂk
F (k) -—E kL
i=1

ny
> g =1
1=1
a; >0, forallie{1,..., ny}

Compute 7 as the sample mean of {y°PtF}E
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Input design based on graph theory (revisited)

To design an experiment in C™™:

5. The optimal pmf p°P! is given by

_opt
Z v

6. Sample uj.p,,, from p°Pt using Markov chains.

TP () linear in the decision variables = The problem is convex!
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Example Il

Nonlinear state space model:

x
Tep1 = bhay + 7232 + ug + vy, vy ~ N(0,0.1%)
t

02 +
Y= 5 + D + ey, er ~ N(0,0.1%)

where 6 = [0 92}T, o = 0.7 O.G}T.

Input design: ngeq = 5 - 10%, n, = 2, C = {-1,0,1}, and
h(-) = log det(-).
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Example Il

Input sequence:

1.5
1
0.5

3 0
-0.5r
s

—1.50

20

40

60

80

100
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Example Il

Results:

Input / h(Zr) | logdet(Zr)

Optimal 25.34
Binary 24.75
Uniform 24.38

50
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Closed-loop application oriented input design
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Closed-loop application oriented input design

(ext. excitation) ry U | System

Kyi(-) —  y¢ (setpoint)

System (6p € ©):
Ti41 = Agoxt + B(;Out
yr = Coort + 11y
ve = H(q; 6o)ey

{e:}: white noise, known distribution.
Feedback: w; =1 + Ky (yr — y?)

52



Closed-loop application oriented input design

Model:
Ti41 = A(H)xt + B(Q)ut
Yy = C’(G)xt +
ve = H(g; 0)e
0 e 0.

Goal: Perform an experiment to obtain 0
= design 1., !

MNseq "

Requirements:
1. y¢, uy should not be perturbed excessively.

2. énseq must satisfy quality constraints.

53



Closed-loop application oriented input design

Minimize control objective:

Nseq
J=FE {Z yo— o+ e - ut_lnz}

Requirements:
1. y¢, uy should not be perturbed excessively.
Probabilistic bounds:

P{|yt - yd‘ < ymax} >1-— €y
P{|ut| < umax} >1—¢6

fort =1,..., Ngeq

54



Closed-loop application oriented input design

Requirements:
2. On,., must satisfy quality constraints.

Maximum likelihood: As ngeq — 00, we have:
Vseq (B — 00) € AN (0, {Z5:} )
= ldentification set:

Osi(a) = {02 (0~ 00) " T (0 — 00) < X% (o) }

55



Closed-loop application oriented input design

Oapp(V)

Requirements:
2. On,., must satisfy quality constraints.

Quality constraint: Application set
1
01) = {0: Varn(6) < - |
Relaxation: Application ellipsoid

Oun(1) = {850~ 00) V3Varp(6)],_, (0~ 0) <

0=09

=2 |
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Closed-loop application oriented input design

Oupp(7)

Requirements:

2. énseq must satisfy quality constraints.

Quality constraint:
Osi(a) C Oapp(7)
achieved by

= 7€
B = 3 V),

57



Closed-loop application oriented input design

Optimization problem:

Nseq
min J=E {Z lly: — yd\lé + ||Aut||?%}
t=1

{re}, 20
s.t. System constraints
P{|yt - yd| < ymax} >1-— €y
P{|Ut‘ < umax} >1—¢€

2
a(n
Ip - WT(Q)VZVWP(@)
o Difficulty: P (and Z§%) hard to optimize.

@ Solution: Use the graph-theory approach!
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Closed-loop application oriented input design

Graph theory approach:
T1:neeq realization from p(r1.,,, ) with alphabet C.

To design an experiment in C™™:

1. Compute all the prime cycles of Genm .

2. Generate the signals {r{}:=}" from the prime cycles of Genm,
foreachi € {1, ..., np}.

59



Closed-loop application oriented input design

Graph theory approach:
T1:neeq realization from p(r1.,,, ) with alphabet C.

()

Given €1:Ny,» 711N, @PProximate

snnt 1

Petmgj){|u£])| < Umax } & Monte Carlo

Pet,rgj)ﬂyt(” - yd‘ < ymax} ~ Monte Carlo

I(J) computed as in previous parts.

> [ol =+ o~
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Closed-loop application oriented input design

Optimization problem (graph-theory):

5" 500

{Blw ’an ] 1
s.t. System constraints
Constraints on {f3;}7*,

N )
Zﬁij@{lu,ﬁ”I < Umax} >1—¢€
Jj=1

Ny .
Zﬁijgﬁ{lyt@) — Y < Ymax} > 1 — ¢y

Z 8,79 » vxa( )Vevapp(e)

seq
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Closed-loop application oriented input design

Optimal pmf:

Ny
t . t
p0p = § :ﬂ;?P pj
Jj=1
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Example 11l

Consider the open-loop, SISO state space system
_ 0
Ti41 = 92 T+ Ut
yr =00z + e

69 egf: 0.6 0.9}T.

Input:
Ug =Tt — k?y Yt
ky = 0.5 known.

T
Goal: Estimate {91 02} using indirect identification.
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Example 11l

Design {r:}2%9, n,, =2, r, € C = {-0.5, —0.25, 0, 0.25, 0.5}.
Performance degradation:

1 500 )
Vaon(6) = 255 > l(6o) — e®)]3
t=1

o yl=0
@ ¢, =¢, =0.07

® Ymax = 2, Umax = 1
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Example Il

Reference:
0.5F ‘ ‘ ]
O e x m—
_0.5— . . . . 4
0 20 40 60 80 100
0.5F ! ! ! ! 1
I
-0.5¢ . f
0 20 40 60 80 100
0.5] ‘ ~m Hmﬁ M
_OI5< — J : L .
0 20 40 60 80 100
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pva
Typewritten Text
Opt. 1:

pva
Typewritten Text
Opt. 2:

pva
Typewritten Text
Binary:


Example Il

Input:
Opt. 1:93.8% = |l syl L iy
0 iO 4‘0 Gb 8b 100
Opt. 2: 86.6% imfmehMLﬂfulﬂfkﬂMMﬂﬂmw
0 2‘0 4‘0 éO 8b 100

Binary: 90.8% = [yl LAy

0 20 40 60 80 100



pva
Typewritten Text
Opt. 2: 86.6%

pva
Typewritten Text
Opt. 1: 93.8%

pva
Typewritten Text
Binary: 90.8%


Example Il

Output:

27 ~ 4
Opt1:96% = Yl P
_27 4

20 40 60 80 100

2r ]
Opt. 2: 93.4% = OWUHJJLJWUWWHMW
_2, i 4

0

20 40 60 80 100

2r 1
Binary: 79.6% = OWMNWWW
_27 . |

20 40 . 60 80 100
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Typewritten Text
Opt. 1: 96%

pva
Typewritten Text
Opt. 2: 93.4%

pva
Typewritten Text
Binary: 79.6%


Example 11l

Application and identification ellipsoids: (98% confidence level)

L ) Oapp(7)
Al ./“““ /@bmary (@)
<£0.9 £
0.8
0.7 ~ 0% (a)
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Conclusions and future work
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Conclusions

@ A new method for input design was introduced.
@ The method can be used for nonlinear systems.

@ Convex problem even for nonlinear systems.
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Future work

@ Reducible Markov chains.

@ Computational complexity.

@ Robust input design.

@ Application oriented input design for MPC.
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Thanks for your attention.
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Appendix |: Graph theory in input design

Example: Elementary cycles for a de Bruijn graph, C := {0, 1},
Ny = 1.

One elementary cycle: z = (0, 1, 0).

= Prime cycles for a de Bruijn Graph, C := {0, 1}, n,, := 2:
v1 = ((0, 1), (1, 0), (0, 1)).
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Appendix Il: Graph theory in input design

Example: Generation of input signal from a prime cycle.

Consider a de Bruijn graph, C := {0, 1}, n,, := 2.
QU1 = ((07 1)7 (17 0)7 (07 1))

o {u}}=lV: Take last element of each node.

Finally,

{Ui}izév = {17 0,L0,..., ((_1)N + 1)/2}
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Appendix III: Building A

@ For ¢ € C™m, define
Ai={jecC™: (5,i) € E}.

(the set of ancestors of 7).

@ For each 7 € C™m, let

. U if
) jeA;and > P{k}#0
P{k}
) KA
Agj = 2, if j € A; and P{k} =0
#A kEAi { }
0, otherwise.

7



Apendix IV: Example nonlinear case

Ut GO Yt

C

Go(ut) = Gi1(q,0) ur + Ga(q,0) uj

where

Gi(q,0) =01+ 02q7"
Gg(q,ﬁ) = 93 + 04 q_l

e¢: Gaussian white noise, zero mean, variance A\, = 1.
78



Apendix IV: Example nonlinear case

Ut GO Yt

C

Go(ut) = G1(q,0) ur + Ga(q,0) ui
where

Gl(q,e) =01 + 05 q_l
Ga(q,0) =03+ 04q7"

We consider h(-) = det(:), cseq = 3, nm, = 2, C := {—1, 0, 1},

and N =5-103.
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@b,
241  Apendix |V: Example nonlinear case
P P

Stationary probabilities:

M X X |
-1 0 1

Ut

[

t—
o

o det(Z7P) = 0.1796.
@ Results consistent with previous contributions (Larsson et al.
2010).
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Auxiliary particle filter:

f: w” (i)
Po(T1:4|yr:e) == ———=0(r1 — 331Z:t)
i=1 Zévzl wEk)

{xgzl’ wgi)}f\ilz Particle system.

Two step procedure to compute {335235, wt(i) fvzlz

1. Sampling/propagation.

2. Weighting.

Appendix V: Particle methods to estimate S,,,(60y)
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Appendix V: Particle methods to estimate S,,,(60y)

Two step procedure to compute {azgz)t, wt(i)}f\;lz
1. Sampling/propagation:

wit
=l Ro (|2 us—1)

N (k)

k=1Wi_1

{al, &V} ~
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Appendix V: Particle methods to estimate S,,,(60y)

Two step procedure to compute {xﬁ, wt(i)}f\;lz
2. Weighting:

w(i) L ge(yt‘l'gi)aut)f9($t|$l(gi_)1aut—1)
t i
R&,t(xt‘xg_)put—l)
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Appendix V: Particle methods to estimate S,,,(60y)

@ Difficulty: Auxiliary particle filter suffers particle degeneracy.

@ Solution: Use fixed-lag smoother.

Main idea FL-smoother:

pG(xt‘y1:T7 ul:T) ~ pG(xt‘ylsnty ul:nt)

for ky = min(t + A, T), for some fixed-lag A > 0.
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Apendix VI: Equivalence time and frequency domain

Frequency Time
Design variable D, (w) P(ULin,,)
o d,(w) >0 p=0
Restrictions QL T By(w)dw < 1 Zul:;nlsii?;:;; =1
Information matrix Ir(®y) Ir(p)
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